# **GRAV-D** Project Overview



- Overall Target: 2 cm accuracy orthometric heights from GNSS and a geoid model
- GRAV-D Goal: Create gravimetric geoid accurate to 1 cm where possible using airborne gravity data
- **GRAV-D**: Two thrusts of the project
  - Airborne gravity survey of entire country and its holdings
  - Long-term monitoring of geoid change

geodesy.noaa.gov



### Gravity for the Redefinition of the American Vertical Datum (GRAV-D)



April 5, 2017

https://www.geodesy.noaa.gov/GRAV-D/

# **GRAV-D** Aircraft

### **US NOAA**

- Gulfstream Turbo Commander Jet Prop NOAA P-3 Hurricane
- Hunter
- US Bureau of Land Management
  - Pilatus PC-12
- **Dynamic Aviation** (contractor)
  - King Air 200T
- Fugro (contractor)
  - Cessna Conquest
  - King Air E-90A
- Aurora Flight Sciences (contractor)
  - Centaur OPA





King Air 200T



Centaur OPA



**Cessna Conquest** 



NOAA P-3 (background) NOAA Turbo Commander (foreground)

geodesy.noaa.gov

## Current North Carolina GRAV-D Survey

# Centaur OPA

- Optionally piloted aircraft system based on Diamond DA42MNG
- Aurora Flight Sciences Modified for Multi-role
  - Manned (certified)
  - Unmanned
  - Hybrid
- UAV performance with ability to operate in unrestricted airspace
- Key attributes:
  - One system, multi-roles
  - Safety & reliability
  - Heavy fuel, low burn diesel engines
  - Multi-Payload Ready
  - Low acquisition & life cycle costs





# **Centaur OPA Specifications**





| Avionics      | Garmin G1000 Glass Cockpit                       |  |
|---------------|--------------------------------------------------|--|
| Airframe      | General Aviation Diamond DA-42                   |  |
| Engine        | Twin, Austro AE300, Heavy Fuel                   |  |
| Altitude      | 18k ft manned; 25k ft unmanned                   |  |
| Size          | Wingspan: 44 ft, Gross Weight: 4400 lbs          |  |
| Efficiency    | ~6-8 gal per hour                                |  |
| Range         | 2000 nmi                                         |  |
| Speed         | Loiter: 85kts, Cruise: 135-160kts, Dash: 175 kts |  |
| Weather       | Anti-icing, non-freezing rain                    |  |
| Runway        | Paved or Grass, 2000+ ft                         |  |
| Payload Power | Up to 5.6kW dedicated via separate bus           |  |
| Other         | Low noise, Non-militaristic look                 |  |

# Modes of Operation - Manned

Manned Mode: Fly like any normal manned aircraft with pilot on-board and in control--sensor operator can be on-board aircraft or at ground station

#### **Operational Benefits:**

- Fly in unrestricted airspace
  - Use system as any normal aircraft to perform mission/services
  - Put system in operation immediately and then switch to long-duration UAV ops when airspace is approved (Ex: Disasters)
  - Traverse areas (countries) where UAV ops are not permitted to get to a location to perform UAV ops (Ex: Africa, Antarctica)
- Small footprint operations
  - Self-transport system—eliminates need for shipping containers & transport vehicles
- High precision flight controls & navigation



## Modes of Operation - Unmanned Unmanned Mode: Fly like any UAV – air vehicle operator and sensor operator control system from the fixed or mobile ground station

## **Operational Benefits:**

- Perform dull or dangerous missions removing crew from harms way
- Extends operational coverage time







# Modes of Operation - Hybrid

**Hybrid Mode**: Fly like a UAV, but a "hands-off" safety pilot is on-board the aircraft – control of the vehicle is from the ground station



#### **Operational Benefits:**

- Allows use of the aircraft in restricted airspace with UAV control
  - Realistic unmanned testing can be performed almost anywhere (Ex: Testing Sense-n-Avoid technologies and airspace integration capabilities)
  - Realistic UAV training can be performed almost anywhere
  - Eliminates need for a COA or the expense of a controlled range location to operate
  - Robot can fly aircraft during dull missions to take stress off pilot (Ex: Large area geo mapping in a "lawn mowing" pattern is extremely dull.)

# Centaur Payloads







| Payload Weight | ≻      | Up to 800 lbs                                                                                                                                                                                                                            |
|----------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accommodations | A<br>A | Dedicated power bus @ 5.6kW peak<br>Mounting in nose, aft baggage, back seats, and<br>belly pod                                                                                                                                          |
| Capabilities   |        | EO/IR, Full Motion Video<br>Laser Range Finder<br>SAR, ISAR, GMTI, DMTI<br>Multi-INT<br>Data Links (11, 16, NATO-1)<br>Ship Track (AIS)<br>Comm Relay/Bridging (HAVEQUICK, SINCGARS,<br>ANW2, TTNT, IW, SRW, P-25, CDL, Vortex,<br>more) |
| Payload Types  | AAAAA  | EO/IR (up to 15"): Star Safire III/380HD, Wescam<br>MX-15HDi, others<br>Radar: 1700B, SeaSpray 5000E, Thales IMaster,<br>NG STARLite, others<br>LIDAR: Riegl 560, others<br>AIS: Shine Micro, SAAB, others<br>Multi-INT, EW, Comm        |

# **TAGS7** Gravimeter

- Micro-g Lacoste Turn-key Airborne Gravity System
- Size: 23 x 21 x 22 inches (from 28 x 22 x 33 in.)
- Weight: 73 kg (from 140 kg)
- Additional improvements:
  - 20 Hz data rate (from 1 Hz)
  - Improved temperature control
  - Improved tolerance of turbulence
  - More robust platform design



# Installation







#### geodesy.noaa.gov



geodesy.noaa.gov

# Relative and Absolute Gravity Meters







# County Boundary Surveys in Progress

- Mitchell-Yancey
- Cabarrus Rowan (report submitted to the counties)
- Harnett Wake
- Chatham Harnett Wake
- Alamance Guilford
- McDowell Mitchell
- Jackson Macon
- Davie Yadkin
- Bladen Columbus Brunswick
- Greene Lenoir (plats recorded)
- Granville Franklin
- Rutherford Polk





