

Water Use Impacted by the Shape of Our Cities Forecasting Urbanization and Future Water Demand

Georgina M. Sanchez

Effects of the spatial patterns of development on human and environmental well-being

NC STATE

Geospatial Analytics

Study system

- Rapidly growing region.
- Characterized by highly heterogeneous landscapes.

Geospatial Analytics

Conceptual framework

We developed an integrated land- and water-use modeling approach to inform more water-efficient development patterns.

People make de facto water decisions when they make land use decisions.

Sanchez et al., 2018 (Water Resources Research)

Geospatial Analytics

Sanchez et al. (2018) highlights

- Spatial patterns of development explained more variability in water use than socio-economic and environmental variables.
- Developed landscapes that promote simple, compact patterns show potential for more efficient use of water.

NC STATE University

Geospatial Analytics

Land change simulations

Land change model: FUTure Urban-Regional Environment Simulation (FUTURES; Meentemeyer et al., 2013).

Geospatial Analytics

Land change model: FUTURES

- Simulates spatial patterns of landuse change driven by urbanization.
- Population demand and development suitability interact to simulate urban growth.
- Realistics patches of growth.

Geospatial Analytics

Land change model: FUTURES

 Projections are based on historical patterns of grow and their relationship to socio-economic, infrastructural and environmental predictors.

Two urbanization scenarios

Status-Quo

Population	24 M
Per capita land consumption	2.5 people/unit
Spatial patterns of development	historical pattern of growth
Additional conservation measures	N/A

	WaterSmart
Population	24 M
Per capita land consumption	3 people/unit
Spatial patterns of development	infill (simple, compact patches)
Additional conservation measures	riparian buffers, wetlands

Geospatial Analytics Quo WaterSmart

Geospatial Analytics

Urbanization probability by 2065

Status-Quo

WaterSmart

Geospatial Analytics

Climate scenarios

NC STATE

Geospatial Analytics

Population growth

Scalability and replicability

Geospatial Analytics

Water saving potential of land use policies by 2065

- In average, the WaterSmart scenario projected 360
 MGD less than the Status-Quo.
- The water saving potential associated to the WaterSmart scenario represents 13% of the region's water use by 2010

Geospatial Analytics

Urbanization scenario comparison

Percentage difference between the WaterSmart and the Status-Quo projected demand.

Integrated land- and water-use planning

Our framework can help local and regional entities to better understand the implications that their planning and development choices have on future water demand.

Geospatial Analytics

Integrated Land Use Planning: An Example from Land and Water Use

Geospatial Analytics

The Team

Chad Wagner

Adam

Laura Gurley

Ge Sun

Ross K. Meentemeyer

Ana M. Garcia

Jordan Smith

Georgina M. Sanchez PhD Candidate Graduate Research Assistant gmsanche@ncsu.edu | (517) 755 - 0264 | geospatial.ncsu.edu https://goo.gl/nYpzP6 | https://goo.gl/B9QY9I | https://goo.gl/tlPuc7

NC STATE

Geospatial Analytics

Regional projected change in water demand

