
Accessibility Practices for
Modern Developers

Amy Hepler
Lead UX/Accessibility Developer, NCDIT
Web Accessibility Specialist (WAS), IAAP

A11y CoP – June 24, 2025

5 Key Concepts

Writing Accessible Code

1. Know there are rules
(and legal requirements)

WCAG 2.1 Total Success Criteria = 78

• Level A = 30

• Level AA = 20

• Level AAA = 28

WCAG 2.1 AA is the legal minimum standard. (50 criteria)

2. Know how screen readers read
(desktop & mobile)

Screen reader users skim headings, landmarks/regions, and links
and expect to hear names, roles, and values of components.

3. Semantics and Structure:
Don’t reinvent the wheel

Whenever possible, use semantic elements that assistive devices
already understand.

4. Test as you work

Testing with an automated testing tool, a keyboard, and a screen
reader will help you uncover and address most common issues.

The earlier you find them, the easier to fix.

5. Every code change can be the
difference between an accessible
and inaccessible product.

Today’s Agenda

• Shift left: Accessibility in the

dev lifecycle

• Semantics & structure

• Keyboard & focus

• Color & contrast

• Responsive layouts

• ARIA

• Dynamic content

• Form validation

• JavaScript framework tips

• AJAX & single-page

applications

• Beyond WCAG 2.1 AA

• Resources

Shift Left: A11y in the Development Lifecycle

• Accessibility starts at planning, not QA

• Pair with designers early

• Document accessible requirements

Plan

Accessibly

Design

Accessibly

Develop

Accessibly

Test

Accessibility

Why Developers Should Shift Left on A11y

• Fixing issues early is cheaper and faster

• Prevents technical debt

• It’s easier to bake in than bolt on

• Reduces rework across teams

• Enables inclusive design and iteration

• Mitigates legal risk

• Improves code quality

• Promotes team ownership

Start with Semantic Structure

• Gives meaning to structure

• Improves accessibility for assistive technologies

• Enables keyboard and assistive technology

interactions – built-in behaviors

• Reduces the need for ARIA

• Better SEO and performance

• Easier to maintain and debug

Semantic Structure in the A11y Tree

• Elements with semantic markup are

included in the accessibility tree.

• Things that do not end up in a11y

tree include:

• <div>

•

• <p>

• CSS styles and background

images

• colors

Best:

<h1>Semantic Structure</h1>

Bad:

<div style=“font-size: 36px; font-

weight: bold;”>Semantic Structure</div>

Acceptable:
<div style=“font-size: 36px; font-

weight: bold;” role=“heading” aria-

level=“1”>Semantic Structure</div>

The Accessibility Tree

• Browsers have an a11y tree.

• The bridge between code and

assistive technology

• Determines what users hear, feel, or

navigate

• Mistakes in code or ARIA can break

it

• Essential for debugging and testing

• If it’s not in the a11y tree, it’s not in

the experience.

HTML 5 Landmark Regions

• Landmarks specify things like
<header>, <nav>, <main>,

<footer> and others

• Improves screen reader navigation

• Reduces need for ARIA

• Defines structure and layout

• Enhances SEO and machine

readability <nav>

<nav>

<header>

<footer>

<nav>

<aside><main>

Landmark Region Tips

• All text should be within a

landmark region

• Minimize number of landmarks

• Distinguish multiple instances of

landmarks by different

programmatic labels
(aria-label or aria-labelledby)

<header>

<footer>

<aside><main>

<nav>

<nav>

<nav aria-label=“Footer”>

<nav aria-label=“Main”>

Keyboard & Focus Management

• Primary way many users interact

with content

• All UI must be navigable with

keyboard alone

• Not everyone uses a mouse

• Focus = orientation

Join the A11y CoP Today!Join the A11y CoP Today!

Keyboard & Focus Management Tips

• Ensure a logical tab order

• Avoid tabindex values over 0

• Use native HTML elements when possible

• Never remove/disable focus styles

• Maintain a visible focus indicator for all interactive elements (:focus-visible)

• Avoid tabindex=“-1” unless for focus management

• Provide skip links

• Use ARIA carefully for focus control

• Avoid keyboard traps

Manage/Restore Focus in Modals & Overlays

• Move focus into the

modal on open

• Trap focus within

modal

• Return focus when

modal closes or

escaped

• Use proper roles and

attributes

<div role="dialog" aria-modal="true"

aria-labelledby="modal-title">

 <h2 id="modal-title">Subscribe to

Updates</h2>

</div>

Color & Contrast

• Text/background: 4.5:1 contrast minimum

• Non-text/background: 3:1 contrast minimum

• Consider color blindness and dark mode

• Avoid color as sole indicator

• Helpful tools:

• Colour Contrast Analyser

• WebAIM Contrast Checker

https://www.tpgi.com/color-contrast-checker/
https://www.tpgi.com/color-contrast-checker/
https://webaim.org/resources/contrastchecker/
https://webaim.org/resources/contrastchecker/

Responsive & Flexible Layouts

• Use ems, rems, or % for

scalable UIs

• Support mobile reflow,

avoid fixed widths

• Test at 400% zoom

• Test keyboard on mobile

view

• Be careful of using flexbox

to reorder UI

Accessible Rich Internet Applications (ARIA)

• Bridges a11y gap between

HTML limitations and full-

blown web applications

• Allows developers to:

• Add roles to elements

• Define states and properties

• Describe relationships

• Doesn’t visually change

appearance

• Use only when native HTML

does not suffice

• Good: aria-expanded to a

toggle button

• Bad: <div role=“button”

tabindex="0” … >

instead of <button>

Using ARIA Correctly

• Prefer native HTML over ARIA

• Use descriptive labels
<button aria-label=“Close settings panel”>X</button>

• Update states programmatically
<button aria-expanded=“false aria-controls=“menu”>Menu</button>

• ARIA landmarks and regions (role=“”)

• Provide keyboard interactions for custom widgets
<div role=“button” tabindex=“0”>Join Today!</div>

• Avoid ARIA misuse

”No ARIA is better

than bad ARIA.”

– W3C

Dynamic Content

• Tell users about dynamic changes. Three main options:

1. Load or reload the page, with the page <title> reflecting the

updated dynamic information.

2. Move the focus to the updated content or to a confirmation or error

message.

3. Use an ARIA live region to make an announcement

• Use the right politeness level:

• aria-level=“polite” waits for current speech to finish

• aria-level=“assertive” interrupts current speech immediately (don’t overuse)

• Live region must be present and empty before making announcement

Form Validation

• Cognitive clarity (what, where, how)

• Essential for screen reader users

• WCAG 2.1 requirements

• SC 3.3.1: Error Identification

• SC 3.3.3: Error Suggestion

• SC 3.3.2: Labels or Instructions

• SC 3.3.4: Error Prevention

Form Validation Best Practices

• Provide clear labels and instructions

• <label for=“”> or <label>-wrapped inputs

• Show inline errors near the field

• Announce errors to screen readers

• Set focus to first error on submit

• Avoid color alone for error indication

JavaScript Framework Tips

• Start with semantic HTML
<button> over <div … onClick …>

• Manage focus proactively

• Announce dynamic content

• Test with screen readers and keyboards

• Use accessible component libraries

AJAX & Single-Page Applications (SPAs)

• Problem:

• No full page reload → no trigger for screen reader

• Focus remains on button/link that triggered update

• Screen reader says nothing → user confused

• Solutions:

• Manage focus and announcements during route/view changes

• Notify screen readers that new content loaded

• Wait 1-2 seconds after injecting content before sending focus

Beyond WCAG 2.1AA

• Plain language & clarity

• Consistent layouts and components

• Whitespace and visual separation

• Visual hierarchy and content chunking

• Error prevention and forgiveness

• Build with real people in mind

Resources

• Google:

• Web Accessibility Course

• Accessible Development Guide

• Official specifications

• How to meet WCAG

• Authoring Tools Accessibility

Guidelines (ATAG)

• Color contrast:

• Colour Contrast Analyser

• WebAIM Contrast Checker

• ARIA Components & Patterns

• MDN A11y Web Docs

• Teach Access – code samples/tips for

testing in VoiceOver

• LinkedIn Learning: Accessibility for

Web Design

https://www.udacity.com/course/web-accessibility--ud891
https://www.udacity.com/course/web-accessibility--ud891
https://developers.google.com/web/fundamentals/accessibility
https://developers.google.com/web/fundamentals/accessibility
https://www.w3.org/WAI/WCAG22/quickref/?versions=2.1
https://www.w3.org/WAI/WCAG22/quickref/?versions=2.1
https://www.w3.org/WAI/standards-guidelines/atag/
https://www.w3.org/WAI/standards-guidelines/atag/
https://www.w3.org/WAI/standards-guidelines/atag/
https://www.tpgi.com/color-contrast-checker/
https://www.tpgi.com/color-contrast-checker/
https://webaim.org/resources/contrastchecker/
https://webaim.org/resources/contrastchecker/
https://www.w3.org/WAI/ARIA/apg/
https://www.w3.org/WAI/ARIA/apg/
https://developer.mozilla.org/en-US/docs/Web/Accessibility
https://developer.mozilla.org/en-US/docs/Web/Accessibility
https://teachaccess.github.io/tutorial/
https://teachaccess.github.io/tutorial/

Remember:
Every code change can be the
difference between an accessible
and inaccessible product.

Questions?

Closing Slide

Amy Hepler

Accessibility Practices for Modern Developers

amy.hepler@nc.gov

mailto:amy.hepler@nc.gov

	Slide 1: Accessibility Practices for Modern Developers
	Slide 2: 5 Key Concepts
	Slide 3: 1. Know there are rules (and legal requirements)
	Slide 4: 2. Know how screen readers read (desktop & mobile)
	Slide 5: 3. Semantics and Structure: Don’t reinvent the wheel
	Slide 6: 4. Test as you work
	Slide 7: 5. Every code change can be the difference between an accessible and inaccessible product.
	Slide 8: Today’s Agenda
	Slide 9: Shift Left: A11y in the Development Lifecycle
	Slide 10: Why Developers Should Shift Left on A11y
	Slide 11: Start with Semantic Structure
	Slide 12: Semantic Structure in the A11y Tree
	Slide 13: The Accessibility Tree
	Slide 14: HTML 5 Landmark Regions
	Slide 15: Landmark Region Tips
	Slide 16: Keyboard & Focus Management
	Slide 17: Keyboard & Focus Management Tips
	Slide 18: Manage/Restore Focus in Modals & Overlays
	Slide 19: Color & Contrast
	Slide 20: Responsive & Flexible Layouts
	Slide 21: Accessible Rich Internet Applications (ARIA)
	Slide 22: Using ARIA Correctly
	Slide 23: Dynamic Content
	Slide 24: Form Validation
	Slide 25: Form Validation Best Practices
	Slide 26: JavaScript Framework Tips
	Slide 27: AJAX & Single-Page Applications (SPAs)
	Slide 28: Beyond WCAG 2.1AA
	Slide 29: Resources
	Slide 30: Remember: Every code change can be the difference between an accessible and inaccessible product.
	Slide 31: Questions?
	Slide 32: Closing Slide

